Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Cybern ; 51(9): 4528-4539, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31794415

RESUMO

Text entry aims to provide an effective and efficient pathway for humans to deliver their messages to computers. With the advent of mobile computing, the recent focus of text-entry research has moved from physical keyboards to soft keyboards. Current soft keyboards, however, increase the typo rate due to a lack of tactile feedback and degrade the usability of mobile devices due to their large portion on screens. To tackle these limitations, we propose a fully imaginary keyboard (I-Keyboard) with a deep neural decoder (DND). The invisibility of I-Keyboard maximizes the usability of mobile devices and DND empowered by a deep neural architecture allows users to start typing from any position on the touch screens at any angle. To the best of our knowledge, the eyes-free ten-finger typing scenario of I-Keyboard which does not necessitate both a calibration step and a predefined region for typing is first explored in this article. For the purpose of training DND, we collected the largest user data in the process of developing I-Keyboard. We verified the performance of the proposed I-Keyboard and DND by conducting a series of comprehensive simulations and experiments under various conditions. I-Keyboard showed 18.95% and 4.06% increases in typing speed (45.57 words per minute) and accuracy (95.84%), respectively, over the baseline.


Assuntos
Dedos , Extremidade Superior , Periféricos de Computador , Desenho de Equipamento , Ergonomia , Retroalimentação , Humanos , Interface Usuário-Computador
2.
IEEE Trans Neural Netw Learn Syst ; 32(6): 2691-2705, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32692685

RESUMO

Convolutional neural networks (CNNs) are one of the most successful deep neural networks. Indeed, most of the recent applications related to computer vision are based on CNNs. However, when learning new tasks in a sequential manner, CNNs face catastrophic forgetting: they forget a considerable amount of previously learned tasks while adapting to novel tasks. To overcome this main barrier to continual learning with CNNs, we introduce developmental memory (DM) into a CNN, continually generating submemory networks to learn important features of individual tasks. A novel training method, referred to here as guided learning (GL), guides the newly generated submemory to become an expert on the new task, eventually improving the performance of the overall network. At the same time, the existing submemories attempt to preserve the knowledge of old tasks. Experiments on image classification tasks show that compared with the state-of-the-art algorithms, the proposed CNN with DM not only improves the classification performance on the new image task but also leads to less forgetting of previous image tasks to facilitate continual learning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...